Расчет естественной и вытяжной системы вентиляции помещения — общие формулы и правила

Вычисление потерь на трение

=feb8d5c750793d56a85f11ee948b1641.png

гдеl — длина участка контура циркуляции, м,dэкв-эквивалентный диаметр поперечного сечения участка, м,

dэкв=

-коэффициент сопротивления трения.

Коэффициентсопротивления трения определяется режимом течениявоздуха в рассматриваемом сечении контура циркуляции, или величиной критерия Рейнольдса:

Re=dэкв

гдеWidэкв — скорость и эквивалентный диаметр канала и кинематический коэффициент вязкости воздуха (определяется по таблицам /1/ и /2/м /с.

Значение

для значенийReв интервале 1058 (развитое турбулентное значение) определяется по формуле Никурадзе:

.-3.Re-0,231

Более подробные сведения по выборуможно получить из /4/ и /5/ В /5/ приведена диаграмма для нахождения значения, облегчающая расчеты. Вычисленные значениявыражаются в паскалях (Па).

Таблица 3

W,

м/с

F,

м2

dэкв

М

W2/2, Н

Re

, Па

1

15

0.8

0,77

1,0

76,5

0,015

1,5

2

25

0,87

0,88

1,75

212,5

0,013

5,5

3

21,7

1,0

0,60

3,0

160,1

0,014

11,2

4

28,9

0,75

0,60

1,75

283,9

0,0135

11,2

5.3. «Местные» потери — под этим термином понимают потери энергии в тех местах, где поток воздуха внезапно расширяется или суживается, претерпевает повороты и т.д. В проектируемой печи таких мест достаточно много — калориферы, повороты каналов, расширения или сужения каналов и др. Эти потери вычисляются также, как доля динамического напора p=W2умножая его на так называемый «коэффициент местного сопротивления»:

Сумма ad6da086895567f7431e3c97604a97c0.png29.4Па

=/2

Коэффициент местного сопротивления определяется но таблицам /1/ и /5/ в зависимости от типа местного сопротивления, и габаритных характеристик. Например, в данной печи местное сопротивление типа внезапного сужения имеет место в канале 1-2 (см. рис.7). Соотношение сечений (узкого к широкому).По приложению /1 / находим =0,25

= 160Па,

W,

м/с

Па

Прим.

43,4

0,125

160

Нах. по табл

1-1

25

1,5

318

~

2-3

25

О,1

21,3

~

3

Диафрагмы в

35,8

3,6

601

~

3-4

21,7

0,28

44,8

~

4-1

28,9

0,85

241

~

4-1

28,9

0,09

25,5

~

Сумма=1411,6 Па

=30 + 1410 =1440 Па

Для производительности 3 и необходимого напора Н>1440

Па.. Получаем: n=550об/мин;Nуст25 кВт.

Формулы для расчета расхода воздуха и температуры при расчете промышленной вентиляции

  1. И.1 Расход приточного воздуха L, м3/ч, для системы вентиляции и кондиционирования следует определять расчетом и принимать больший из расходов, требуемых для обеспечения:
    • а) санитарно-гигиенических норм в соответствии с (И.1);
    • б) норм взрывопожарной безопасности в соответствии с (И.2);
    • в) условий, исключающих образование конденсата, в соответствии с (И.3).
  2. И.2 Расход воздуха следует определять отдельно для теплого и холодного периодов года и переходных условий из условия ассимиляции тепло- и влаговыделений и по массе выделяющихся вредных или взрывоопасных веществ, принимая большую из величин, полученных по формулам (И.1) — (И.7) (при плотности приточного и удаляемого воздуха, равной 1,2 кг/м3):

    а) по избыткам явной теплоты при значении углового коэффициента луча процесса в помещении ε ≥ 40000 кДж/кг

    1.jpg

    (И.1)

    Для помещений с тепло- и влаговыделениями при значении углового коэффициента луча процесса в помещении ε< 40000 кДж/кг расход воздуха следует определять по формуле (И.3) или (И.4).

    Тепловой поток, поступающий в помещение от прямой и рассеянной солнечной радиации, следует учитывать при устройстве:

    вентиляции, в том числе с испарительным охлаждением воздуха, — для теплого периода года;

    кондиционирования — для теплого и холодного периодов года и для переходных условий;

    б) по массе выделяющихся вредных или взрывоопасных веществ

    2.jpg

    (И.2)

    При одновременном выделении в помещение нескольких вредных веществ, обладающих эффектом суммации действия, воздухообмен следует определять, суммируя расходы воздуха, рассчитанные по каждому из этих веществ:

    а) по избыткам влаги (водяного пара)

    (И.3)

    Для помещений с избытком влаги следует проверять достаточность воздухообмена для предупреждения образования конденсата на внутренней поверхности наружных ограждающих конструкций при расчетных параметрах Б наружного воздуха в холодный период года:

    б) по избыткам полной теплоты

    (И.4)

    в) по нормируемой кратности воздухообмена

    L = Vpn;

    (И.5)

    г) по нормируемому удельному расходу приточного воздуха:

    И.6L = Ak;

    (И.6)

    И.7L = Nm.

    (И.7)

    В формулах (И.1) — (И.7):

    Lw,z — расход воздуха, удаляемого из обслуживаемой или рабочей зоны помещения системами местных отсосов, и на технологические нужды, м3/ч;

    Q, Qh,f — избыточный явный и полный тепловой потоки в помещении, ассимилируемые воздухом центральных систем вентиляции и кондиционирования, Вт;

    с — теплоемкость воздуха, равная 1,006 кДж/(кг °С);

    tw,z — температура воздуха, удаляемого системами местных отсосов в обслуживаемой или рабочей зоне помещения, и на технологические нужды, °С;

    t1 -температура воздуха, удаляемого из помещения за пределами обслуживаемой или рабочей зоны, °С;

    tin — температура воздуха, подаваемого в помещение, °С;

    W — избытки влаги в помещении, ассимилируемые воздухом центральных систем вентиляции и кондиционирования, г/ч;

    dw,z — влагосодержание воздуха, удаляемого из обслуживаемой или рабочей зоны помещения системами местных отсосов, и на технологические нужды, г/кг;

    d1 — влагосодержание воздуха, удаляемого из помещения за пределами обслуживаемой или рабочей зоны, г/кг;

    din — влагосодержание воздуха, подаваемого в помещение, г/кг;

    Iw,z — удельная энтальпия воздуха, удаляемого из обслуживаемой или рабочей зоны помещения системами местных отсосов, и на технологические нужды, кДж/кг;

    I1 — удельная энтальпия воздуха, удаляемого из помещения за пределами обслуживаемой или рабочей зоны, кДж/кг;

    Iin — удельная энтальпия воздуха, подаваемого в помещение, кДж/кг, определяемая с учетом повышения температуры в соответствии с (И.6);

    mро — расход каждого из вредных или взрывоопасных веществ, поступающих в воздух помещения, мг/ч;

    qw,z, q1 — концентрация вредного или взрывоопасного вещества в воздухе, удаляемом соответственно из обслуживаемой или рабочей зоны помещения и за их пределами, мг/м3;

    qin — концентрация вредного или взрывоопасного вещества в воздухе, подаваемом в помещение, мг/м3;

    Vp — объем помещения, м3; для помещений высотой 6 м и более следует принимать

    Vp = 6А,

    где А — площадь помещения, м2;

    N — число людей (посетителей), рабочих мест, единиц оборудования;

    n — нормируемая кратность воздухообмена, ч-1;

    k — нормируемый расход приточного воздуха на 1 м2 пола помещения, м3/(ч∙м2);

    m — нормируемый удельный расход приточного воздуха на 1 чел., м3/ч, на одно рабочее место, на одного посетителя или единицу оборудования.

    Параметры воздуха tw,z, dw,z, Iw,z следует принимать равными расчетным параметрам в обслуживаемой или рабочей зоне помещения по разделу 5 настоящего свода правил, a qw,z — равным ПДК в рабочей зоне помещения.

И.3 Расход воздуха для обеспечения норм взрывопожарной безопасности следует определять по формуле (И.2).

При этом в формуле (И.2) qw,z и q1 следует заменить на 0,1 qg, мг/м3 (где qg — нижний концентрационный предел распространения пламени по газо-, паро- и пылевоздушной смесям).

И.4 Расход воздуха Lhe, м3/ч, для воздушного отопления, не совмещенного с вентиляцией, следует определять по формуле

(И.8)

где Qhe — тепловой поток для воздушного отопления помещения, Вт;

the — температура подогретого воздуха, °С, подаваемого в помещение, определяется расчетом.

И.5 Расход воздуха Lmt от периодически работающих вентиляционных систем с номинальной производительностью Ld, м3/ч, приводится исходя из n, мин, прерываемой работой системы в течение 1 ч, по формуле

Lmt = Ldn’/60.

(И.9)

И.6 Температуру приточного воздуха, подаваемого системами вентиляции с искусственным побуждением и кондиционирования воздуха, tin °С, следует определять по формулам:

а) при необработанном наружном воздухе

tin = text + 0,001p;

(И.10)

б) при наружном воздухе, охлажденном циркулирующей водой по адиабатному циклу, снижающей его температуру на Δt1, °С

tin = text — Δt1 + 0,001p;

(И.11)

в) при необработанном наружном воздухе (см. И.6,а) и местном доувлажнении воздуха в помещении, снижающем его температуру на Δt2, °С

tin = text — Δt2 + 0,001p;

(И.12)

г) при наружном воздухе, охлажденном циркулирующей водой (см. И.6, б), и местном доувлажнении (см. И.6, в)

tin = text — Δt1 — Δt2 + 0,001p;

(И.13)

д) при наружном воздухе, нагретом в воздухонагревателе, повышающем его температуру на Δt3, °С

tin = text + Δt3 + 0,001p,

(И.14)

где р — полное давление вентилятора, Па;

text — температура наружного воздуха, °С.

Приточная вентиляция — важное дополнение к вытяжной вентиляции ↑

В том случае, если мощность вытяжной вентиляции слишком велика, в помещении могут возникнуть сквозняки и проблемы с потерей тепла, поэтому необходимо провести расчет приточной вентиляции, которая должна будет компенсировать работу вытяжной. В жилых домах, коттеджах, квартирах приточная вентиляция может обеспечить, в среднем, двукратный воздухообмен, который можно регулировать при помощи окон, дверей и кондиционеров.

ventilyaciya1.jpgСхема приточно-вытяжной вентиляции наглядно показывает оптимальное расположение вентиляционного оборудования и направления потоков воздуха

Оптимальный расчет приточно-вытяжной вентиляции основан на совпадении показателей, то есть на равновесии между поступающим и выводимым воздухом.

Аэродинамический расчет вентиляции ↑

Аэродинамический расчет системы вентиляции проводится для зданий с принудительным воздухообменом, которые состоят из большого количества помещений, и расчет естественной вентиляции помещения показывает, что она не в состоянии обеспечить необходимый воздухообмен для поддержания нормального микроклимата в помещении. Аэродинамический расчет вентиляции применяется при планировании больниц, учебных заведений, офисных зданий, рассчитанных на постоянное присутствие большого количества людей, и доверять выполнение расчетов лучше специалистам, так как правильно построить аксонометрическую проекцию здания и учесть все нюансы человеку без специальных навыков очень тяжело.

Этапы

Etapy-proektirovaniya-300x180.jpgПодбор оптимальной по мощности и стоимости системы воздухообмена проходит пошагово. Порядок проектирования очень важен, так как от его соблюдения зависит эффективность работы конечного продукта:

  • Определение типа вентсистемы. Проектировщик анализирует исходные данные. Если требуется проветрить небольшое жилое помещение, то выбор падает на приточно-вытяжную систему с естественным побуждением. Этого будет достаточно, когда расход воздуха небольшой, вредных примесей нет. Если требуется рассчитать большой венткомплекс для завода или общественного здания, то предпочтение отдаётся механической вентиляции с функцией подогрева/охлаждения приточки, а если понадобится, то и с расчётом по вредностям.
  • Анализ выбросов. Сюда входит: тепловая энергия от осветительных приборов и станков; испарения от станков; выбросы (газы, химикаты, тяжёлые металлы).
  • Расчет воздухообмена. Задача систем вентилирования – удаление из помещения избытков тепла, влаги, примесей с равновесной или чуть отличающейся подачей свежего воздуха. Для этого определяется кратность воздухообмена, согласно которой подбирается оборудование.
  • Подбор оборудования. Производится по полученным параметрам: требуемый объем воздуха на приточку/вытяжку; температура и влажность внутри помещения; наличие вредных выбросов, подбираются вентустановки или готовые мультикомплексы. Самый важный из параметров – объём воздуха, необходимый для поддержания проектной кратности. Фильтры, калориферы, рекуператоры, кондиционеры и гидравлические насосы идут как дополнительные устройства сети, обеспечивающие качество воздуха.

</table>

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий